

Curriculum Map

Year Group: 10

Subject: Triple Science Chemistry (Triple Science topics only in RED)

	Autumn 1/Autumn 2	Autumn 2	Autumn 2/Spring 1	Spring 2	Summer 1 and Summer 2
Content	1 Review Year 9	Chemical	Chemical	Electrolysis	Energy Changes
	Topics	Calculations	Changes	- The process of	Energy changes in reactions -
	2 Structure and	Conservation of	Formation of	electrolysis -	Investigating energy changes -Energy
	Bonding	mass and	metal oxides -The	Electrolysis of	profiles -Bond energies -Calculating
	-lonic Bonding -lonic	balanced	reactivity series -	molten ionic	energy changes
	Compounds and	chemical	Extraction of	compounds -Using	Rates of Reaction
	their properties -	equations -	metals and	electrolysis to	Calculating rates of reactions - Factors
	Covalent bonding -	Relative formula	reduction -	extract metals -	which affect the rates of chemical
	Properties of simple	mass -Mass	Oxidation and	Electrolysis of	reactions - Collision theory and
	covalent molecules -	changes when a	reduction in terms	aqueous solutions	activation energy –Catalysts
	Properties of giant	reactant or	of electrons -	Representation of	
	covalent molecules -	product is a gas -	Reactions of acids	reactions at	Ch7 Chemical Cells and Batteries
	Structure and	Chemical	with metals -	electrodes as half	What happens at electrodes
	properties of isomers	measurements -	Neutralisation of	equations	How to interpret data on chemical
	of carbon: Diamond,	Moles -Amounts of	acids and salt		cells in terms of the relative reactivity
	graphite, graphene	substances in	production -		of different metals
	and fullerenes -	equations -Using	Soluble salts -The		
	Metallic Bonding	moles to balance	pH scale and		The use of hydrogen fuel cells as
	Properties of Metals	equations -	neutralisation		alternative fuels.
	and Alloys –Polymers	Limiting reactants	Strong and weak		Half equations in hydrogen fuel cells.
		-Concentration of	acids		
	Review of Chapters 1	solutions			
	and 2		Ch5 Chemical		
	Transition Metals –	Ch4 Chemical	Changes		
	Properties	Calculations	Apply chemical		
	Reactions	Higher tier maths	calculations to the		
	Uses	skills Yield of a	reactions in this		
	Ch3 Structure and		chapter.		
		chemical reaction			
	Bonding Nanoparticles	Atom economy Titrations and			
	What they are	associated			
	Uses Uses	calculations			
	Risks				
	KISKS	Volumes of gases			

	Autumn 1/Autumn 2	Autumn 2	Autumn 2/Spring 1	Spring 2	Summer 1 and Summer 2
Skills	-Know how to identify	Balance formula	Safe use of	-Apply a	-Calculate bond energies -Draw
	and differentiate	equations - A	appropriate	knowledge of a	energy profiles for an endothermic
	between the	variety of maths	heating devices	range of	and exothermic reaction -Use of
	bonding in	skills (detailed in	and techniques	techniques,	appropriate apparatus to make and
	substancesDraw a	numeracy)	including use of a	instruments,	record a range of measurements
	dot-and-cross		Bunsen burner	apparatus, and	accurately, including mass,
	diagram for simple	Ch4 Chemical	and a water bath	materials to select	temperature, and volume of liquids
	molecules -Work out	Calculations	or electric heater.	those appropriate	Use of appropriate apparatus and
	the charge on the	Using data and	-Use of	to the experiment.	techniques for conducting and
	ions of metals and	experimental	appropriate	-Carry out	monitoring chemical reactions
	non-metals from the	results to	apparatus and	experiments	Making and recording of appropriate
	group number of the	calculate yield	techniques for	appropriately	observations during chemical
	element, limited to	and atom	conducting	having due	reactions including changes in
	the metals in Groups	economy,	chemical	regard for the	temperatureSafe use and careful
	1 and 2, and non-	Balance symbol	reactions,	correct	handling of gases, liquids and solids,
	metals in Groups 6	equations	including	manipulation of	including careful mixing of reagents
	and 7Identify the	Carry out	appropriate	apparatus, the	under controlled conditions, using
	types of bonding and	accurate	reagentsSafe	accuracy of	appropriate apparatus to explore
	molecule from their	titrations, getting	use of a range of	measurements	chemical changesUse scientific
	formulae -Recognise	concordant results	equipment to	and health and	theories and explanations to develop
	substances as small	that can be used	purify and/or	safety	hypothesesPlan experiments or
	molecules, polymers	in calculations	separate	considerations.	devise procedures to make
	or giant structures	Carry out titration	chemical mixtures		observations, produce or characterise
	from diagrams	calculations to	including		a substance, test hypotheses, check
	showing their	work out	evaporation,		data or explore phenomenaApply a
	bonding.	concentration	filtration,		knowledge of a range of techniques,
		and moles of	crystallisation		instruments, apparatus, and materials
	Ch 1 and 2	reactants and	Safe use and		to select those appropriate to the
	Transition Metals –	products of	careful handling		experimentEvaluate methods and
	compare their	titrations.	of liquids and		suggest possible improvements and
	physical and		solids, including		further investigations.
	chemical properties	Ch4	careful mixing of		0.75
	with other elements	Solving problems	reagents under		Ch7 Energy Changes
	Investigate the	by balancing	controlled		Evaluate the use of chemical cells
	different colours of	chemical	conditions.		using given data and information
	transition metal ions	equations and			Practical investigation on chemical
	eg Vanadium	using calculations			cells – plan and carry out an

	Autumn 1/Autumn 2	Autumn 2	Autumn 2/Spring 1	Spring 2	Summer 1 aı	nd Summer 2
		to determine the	Ch5 Chemical		investigation on vol	tage produced by
	Ch3	yiled and atom	Changes		simple cells using di	fferent metals
	Compare normal	economy of a	Apply chemical			
	dimensions and sizes	variety of	calculations to the		Evaluate the use of	hydrogen fuel cells.
	to nano dimension	reactions.	reactions in this		Write half equations	s for the electrode
	and sizes	Carrying out	chapter.		reactions in hydrog	en fuel cells.
	Appreciate some of	titrations				
	the uses and	accurately and				
	applications of	safely and then				
	nanoparticles.	using your results				
	Appreciate some of	to calculate				
	the risks that they	concentrations				
	might pose.	and moles of				
		reactants and				
		products.				
		Considering				
		practical				
		processes and				
		considering how				
		yield can be				
		improved.				I
Key questions	How can we use the	What is Relative	How can we	What is electrolysis	Why do chemical	What factors
	particle model to	Atomic Mass and	extract metals	and why is it	reactions always	affect the rate of
	explain the properties	how is it	from their ores?	useful?	involve transfers of	a reaction?
	of solids, liquids and	calculated?	How can we	How can we	energy?	How can we use
	gases, including	What is Relative	make and	decompose ionic	What are	collision theory to
	changes of state?	Formula Mass and	prepare pure dry	compounds to	exothermic	explain how
	What are chemical	how is it	samples of salts?	get useful	reactions?	temperature,
	compounds?	calculated?	How can we use	products?	What are	concentration,
	How are ions formed,	How do we	the reactivity	What happens at	endothermic	pressure, surface
	and how are ionic	calculate moles?	series to predict	each electrode	reactions?	area and using a
	compounds held	How do we	displacement	during electrolysis	How can we	catalyst all affect
	together?	balance	reactions?	and how can we	distinguish	the rate of a
	How are covalent	equations? What is	How can we use	represent the reactions at each	between	reaction. How can we
	bonds formed and	concentration	ideas about electron transfer		exothermic and endothermic	measure the rate
	what type of			electrode using	reactions?	of a reaction?
			to identify	half equations?	TEUCHOUSE	or a reactions

Autumn 1/Autumn 2	Autumn 2	Autumn 2/Spring 1	Spring 2	Summer 1 and Summer 2
substances contain	and how can we	oxidised and		How can we
covalent bonds?	calculate it?	reduced species?		represent
What is metallic		How can we		exothermic and
bonding?	Ch4	investigate pH		endothermic
How can we use an	What is yield?	changes with		reactions with
understanding of the	What factors	different		reaction profiles?
different types of	affect yield?	neutralisation		
chemical bond to	What is atom	reactions?		Ch7 Energy
explain the properties	economy?			Changes
of different	Why is it important	Ch5 Chemical		How to the
compounds and	in the chemical	Changes		relative reactivity
materials?	industry?	How can we		of different metals
	What are titrations	apply chemical		affect the voltage
Ch1 and 2	useful for?	calculations to the		produced by
What are transition	How can we	reactions in this		chemical cells?
metals?	calculate the	chapter?		
How do their	volume of gases in	What transition		How do you write
properties compare	chemical	metal uses do we		half equations for
to other metallic	reactions?	find here?		the electrode
elements?		What connections		reactions in
What uses do they		can we make to		hydrogen fuel
have?		other chapters		cells?
Why do they produce		and ideas?		
such a variety of				
coloured solutions				
and compounds?				
Ch3				
What are				
nanoparticles?				
How small are they?				
What uses do they				
have?				
What problems might				
they cause?				

	Autumn 1/Autumn 2 Autumn 2	Autumn 2/Spring 1 Spring 2	Summer 1 and Summer 2
Assessment	Formative 'low stakes' assessments to take place more frequently throughout the term. This could be in the form of a range methods: • Quiz • Homework task • Microsoft Forms short tests • In class short tests • Questions and answer sessions • Spelling tests • Group work tasks • Peer assessments Literacy and numeracy activities End of term summative assessments	Formative 'low stakes' assessments to take place more frequently throughout the term. This could be in the form of a range methods:	Formative 'low stakes' assessments to take place more frequently throughout the term. This could be in the form of a range methods: • Quiz • Homework task • Microsoft Forms short tests • In class short tests • Questions and answer sessions • Spelling tests • Group work tasks • Peer assessments Literacy and numeracy activities End of term summative assessments
Literacy/ Numeracy/ SMSC/ Character	Literacy and numeracy activities in class including practical write-ups. Using models eg Particle Model to explain physical and chemical phenomena and properties. Numeracy: Calculations including relative atomic mass, moles, balancing equations, interpreting data, plotting graphs. Also above. SMSC/Character – appreciating the environmental impact of industrial chemical processes	Literacy: Writing up class practicals including required practicals. Using models to explain chemical processes. Numeracy: Balancing equations. Interpreting data. SMSC/Character – appreciating the environmental impact of industrial chemical processes	Literacy – writing up class practicals, using models to explain chemical processes, analysing data to draw conclusions. Numeracy – calculating bond enthalpies, drawing reaction profiles, calculating rates of reaction, interpreting data, using experimental data to draw conclusions. SMSC/Character – appreciating the environmental impact of industrial chemical processes