

Curriculum Map

Subject: Triple Science (Physics)

(Separate Science Content is in RED)

Year Group: 10

	Autumn 1/Autumn 2	Autumn 2/Spring 1	Spring Term	Spring Term 2/Summer Term
Content	1 Review Year 9 Topics	1 Energy Resources	1 Molecules and Matter	Forces in Balance
	2 Energy Transfer By	National and global	-Density of materials	1. Scalar and Vector quantities 2. Contacts
	Heating	energy resources.	-Changes of state	and Non-contact forces 3. Gravity and
	Conductors and	Advantages and	-Internal energy	Weight 4.Resultant Forces 5. Forces and
	insulators	disadvantages of	-Temperature changes in a	Elasticity 6. Moments, lever and gears 7.
	Thermal conductivity	specific renewable	system and specific heat	Pressures, pressure in fluids and
	Specific heat	and non-renewable	capacity	atmospheric pressure (HT only content
	capacity	energy sources	-Changes of heat and	within lesson - archimedes principle) 8.
	Heating and insulating	Supply and	specific latent heat	Atmospheric pressure
	houses	demand – how	-Particle motion in gases	Motion
		energy supply is		9. Distance and Displacement 10. Speed
	Ch12: Wave Properties	managed to meet	Ch6 Gas Pressure and volume	and Velocity 11. Distance-time graphs 12.
	Review of Combined	variations in	Understand how pressure or volume	Acceleration and Velocity-time graphs
	Science content from	demand	change affect gases	and equations of motion (HT only content
	Year 9		Understand why the pressure of a gas	within lesson - area under graph)
	Sound Waves, the ear	Ch2 Energy Transfer	changes when its volume changes at	Forces in Motion
	and echo sounding	by Heating	constant temperature	Newton's 1st, 2nd and 3rd Law's
	Uses of Ultrasound	Understand what	Understand why the temperature of a gas	Braking distances Momentum
	Seismic Waves –	intra red radiation is	increases when it is compressed quickly.	
	analysing seismic	Understand how	Know Boyle's Law	Ch8 Forces in Balance
	waves and learning	Intra rea radiation		What dre moments?
	about the Earth's	depends on		what does the moment of a force
	structure	temperature		
	Chldlight	Absorption and		why dre levers so useful?
	Child Light	emission of initial rea		Cogra what they are and how they work
	Reflection of light	radiation		Gears – what they are and how they work
				around a fixed point aither clockwise or
	Specular and diffuse			anticlockwise
	reflection			CITICIOCKWISE
	Refraction of light			Ch10 Forces and Mation
	Understand what			Using conservation of momentum
	determines the colour			Explain why two objects that push each
	of surfaces			other apart move away at different
	Understand how			speeds
	wavelength of light			
	wavelength of light			

	Autumn 1/Autumn 2	Autumn 2/Spring 1	Spring Term	Spring Term 2/Summer Term
	changes across the			Explain what happens to the total
	visible spectrum			momentum of an object when two objects
	Convex and concave			collide
	lenses			Impact forces
	Real and virtual			Explain what can be said about the
	images			impact forces and the total momentum
				when two vehicles collide
				Explain why an impact force depends on
				the impact time
				Explain why safety devices like helmets
				and cushioned surfaces reduce impact
				forces
				Explain how safety devices such as seat
				belts, air bags, side impact bars and
				crumple zones work
				Ch11 Forces and Pressure
				What is pressure?
				Pressure equation
				Pressure in liquids
				Atmospheric pressure
				Upthrust and flotation
Skills	Understand how heat	Compare the	Equation application 1. Recall and apply	Equation application 1.Students should be
	energy is transferred	advantages and	equations for; density, specific heat	able to recall, apply and link the equations
	Measure and	disadvantages of	capacity, specific latent heat, Practical	for: weight, extension applied, force
	calculate specific	different renewable	Experiments 1.Perform an experiment to	applied, elastic potential energy,
	heat capacity	and non-renewable	determine the densities of regular and	moments, pressure, speed, acceleration,
		energy resources	irregular solid objects and liquids. 2.Perform	change in velocity, acceleration and
	2.Investigate thermal	Give simple	an experiment to measure the latent heat	displacement, force, mass and
	conductivity using	explanations of how	of fusion of water.	acceleration and momentum Practical
	rods of different	different renewable		Experiments 1. Investigate the relationship
	materials. 3.an	energy resources	Ch6 Molecules and Density	between torce and extension for a spring.
	investigation to	produce electricity.	Practical investigations on pressure and	2. Investigate the effect of varying the
	determine the specific	Explain in simple	volume	torce on the acceleration of an object of
	heat capacity of one	terms how a non-	Calculations using Boyle's Law	constant mass, and the effect of varying
	or more materials. The	renewable power		the mass of an object on the acceleration
	investigation will	station works.		produced by constant force
	involve linking the	Give a simple		Ch0 Foress in heritary at
	aecrease of one	explanation of how		Cho Forces in balance
	energy store (or work	nuclear power is		Calculate the moment of a force

Autumn 1/Autumn 2	Autumn 2/Spring 1	Spring Term	Spring Term 2/Summer Term
done) to the increase	used to generate		Investigate the turning effect of a force
in temperature and	electricity.		Investigate wheels and axes
subsequent increase			Investigate and work out centre of mass of
in thermal energy	Ch2 Energy Transfer		different objects
stored.	by Heating		Identify the forces that can turn objects
	Experimental		around a fixed point
Ch12 Waves	techniques to		Calculate the size of a force (or its
Investigating different	detect infra red		perpendicular distance from a pivot)
sounds	radiation		acting on an object that is balanced.
Compare the	Analyse and		
properties of different	interpret black body		Ch10 Forces and Motion
sound waves	radiation graphs		Apply conservation of momentum to
Calculate depth of	Apply		different collisions
water using echo	understanding of		Momentum calculations
sounding data	infra red radiation		Calculate impact time in collisions
Calculations using	to explain how the		Analyse the effectiveness of different
ultrasound data	earth's temperature		safety devices in vehicles
Compare different	changes		
seismic waves and use			Ch11 Forces and Pressure
them to determine			Use the pressure calculation
properties of the earth			Apply understanding of pressure to
			different situations
Ch14 Light			Calculate the pressure caused by a liquid
Draw accurate ray			column
diagrams			Calculate the force on a flat object due to
Investigate refraction			pressure differences
Apply the laws of			Understand why the atmosphere exerts a
reflection and			pressure
refraction			Decide whether an object will float or sink
Use experimental			Practical investigations on upthrust
techniques to test a			Practical density tests
variety of surfaces			
and determine their			
colour in differently lit			
situations			
Use convex and			
concave lenses, use			
ray diagrams to show			
their properties			
Calculate			
magnification			

Autumn 1/Autum	nn 2 Autumn 2/Spring 1	Spring Term	Spring Term 2/Summer Term
Find the position c	ind		
nature of an imag	e		
formed by a lens			
Key questions What are conduct	tors What different	What is density and how can we measure	How do we represent forces and what is
and what are	energy resources	itš	meant by a resultant force?
insulators? Why ar	e are available?	How can we use the kinetic theory of	How can you work out the effect of a
both types of mate	erial How are these	matter to understand changes of state	resultant force on an object?
Useful?	resources used to	aand properfies of solids, liquids and	What is the difference between vectors
What is specific he	eat generate	gases?	and scalars?
capacity an how		How can you find the melting point of a	What is the centre of mass of an object
we investigate it?	What are the	substance?	and how can we identify if?
How are buildings	advantages and	What is latent heat and how can we	What is the parallelogram of forces and
neated and insula	ted disadvantages of		now do we use It?
emcientiye	different types of	to tomporature?	How can we resolve forces?
Ch12 Waya Brana	rties per renewable		How can we calculate speed?
What affacts the		Ch4 Malaculas and Matter	araphs ²
loudnoss of a musi	energy resources?	Why does the pressure of a day change	V/bat is volocity?
note?	energy issues that	when its volume changes at constant	What can we find out from velocity-time
How do our ears	society needs to	temperature?	aranhs?
detect sound way		Why does the temperature of a gas	What is acceleration and how can it be
Why is human hea	rina	increase when it is compressed quickly	calculated?
limited to a certair	Ch2 Energy transfer	enough?	What is the relationship between the
range of sound	by heating	Ŭ	resultant force, an object's mass, and its
frequencies?	What is meant by		acceleration?
What is echo	black body		What is meant by inertia?
sounding?	radiation?		What is the difference between weight
How are ultrasoun	d What happens to		and mass?
waves used in	the temperature of		What effect does gravity have on a falling
medicine and in	an object if it		object?
industry?	absorbs more		What is terminal velocity?
Why are ultrasound	d radiation than it		What is the relationship between the
scans safer than x-	emits?		stopping distance, braking distance and
rays?	How is the		thinking distance, and what factors affect
What are the diffe	rent temperature of the		them?
seismic waves and	Earth attected by		What is momentum and how is it
what can they fell	Us the balance of		
about the Earth's	absorbed and		what is hooke's Law and how do we
STRUCTURE	emitted radiation?		
Ch14 Light			Ch8 Forces in balance

Autumn 1/Autumn 2	Autumn 2/Spring 1	Spring Term	Spring Term 2/Summer Term
Autumn 1/Autumn 2 How are images formed in plane mirrors? What is meant by specular reflection and diffuse reflection?	Autumn 2/Spring 1	Spring Term	Spring Term 2/Summer Term What does the moment of a force measure? How can you increase the moment of a force? Why are levers force multipliers? What do gears do? How do gears give a bigger turning effect? What is the centre of mass of an object? How can you find the centre of mass of a symmetrical object? How can we use our knowledge of forces and moments to explain why objects at
			rest don't turn? Ch10 Force and Motion Why do two objects that push each other apart move away at different speeds? What happens to the total momentum of two objects when they collide? What factors affect the impact forces when two objects collide? Why does an impact force depend on the impact time? How can you work out if a car in a collision was speeding?
			Ch11 Force and Pressure What is meant by pressure? What does the pressure of a liquid depend on? How and why does atmospheric pressure change with altitude? How does the density of the atmosphere change with altitude?

	Autumn 1/Autumn 2	Autumn 2/Spring 1	Spring Term	Spring Term 2/Summer Term
Assessment	Formative 'low stakes' assessments to take place more frequently throughout the term. This could be in the form of a range methods: Quiz Homework task Microsoft Forms short tests In class short tests Questions and answer sessions Spelling tests Group work tasks Peer assessments Literacy and numeracy activities	Formative 'low stakes' assessments to take place more frequently throughout the term. This could be in the form of a range methods: Quiz Homework task Microsoft Forms short tests In class short tests Questions and answer sessions Spelling tests Group work tasks Peer assessments Literacy and numeracy activities End of term summative assessments	Formative 'low stakes' assessments to take place more frequently throughout the term. This could be in the form of a range methods: Quiz Homework task Microsoft Forms short tests In class short tests Questions and answer sessions Spelling tests Group work tasks Peer assessments Literacy and numeracy activities End of term summative assessments	Formative 'low stakes' assessments to take place more frequently throughout the term. This could be in the form of a range methods: Quiz Homework task Microsoft Forms short tests In class short tests Questions and answer sessions Spelling tests Group work tasks Peer assessments Literacy and numeracy activities End of Year summative assessments
Literacy/ Numeracy/ SMSC/ Character	Using scientific models to explain physical phenomena. Applying scientific understanding to real world examples. Using scientific equations to carry out calculations. Plotting graphs and bar charts. Interpreting data presented graphically.	Using scientific models to explain physical phenomena. Applying scientific understanding to real world examples. Using scientific equations to carry out calculations. Plotting graphs and bar charts. Interpreting data presented graphically.	Using scientific models to explain physical phenomena. Applying scientific understanding to real world examples. Using scientific equations to carry out calculations. Plotting graphs and bar charts. Interpreting data presented graphically.	Using scientific models to explain physical phenomena. Applying scientific understanding to real world examples. Using scientific equations to carry out calculations. Plotting graphs and bar charts. Interpreting data presented graphically.