
Curriculum Map

Subject: Computer Science Year Group: 10

The Curriculum Map for Computer Science follows two parallel strands, split between Computational Thinking (CT) - the programming aspects covered in
Topics 1 & 6 and the Principles of Computer Science (P) - the theory aspects covered by Topics 1 – 5

 Autumn 1 Autumn 2 Spring 1 Spring 2 Summer 1 Summer 2
Content Topic1 and 6:

Computation
Thinking and Problem
Solving

Key Areas:
1.1 Programming:

tools and
strategies

1.2 Algorithms and
programs

1.3 Data types and
variables

Keywords:
Program,
programming
language, python,
arithmetic operators,
BIDMAS, algorithms,
variables, data
types, IDE, sequence,
identifier

Topic 1 and 6:
Computation
Thinking and
Problem Solving

Key Areas:
1.4 Selection and

relational
operators

1.5 Repetition
1.6 One-

dimensional
data
structure

Keywords:
Input, output,
data structure,
repetition,
function,
relational
operator,
selection
operator

Topic 2: Data

Key Areas:
2.1 Binary
2.2 Data
Representation
(Part 1)

Keywords:
Binary, nibble, bit
byte, kilobyte,
megabyte, signed
and unsigned
integers, two’s
complement,
overflow error,
arithmetic and
logical binary shift

Topic 2: Data

Key Areas:
2.2 Data
Representation (Part
2)
2.3 Data storage
and compression

Keywords:
Hexadecimal, ASCII,
analogue and
digital data,
amplitude, sample
rate, bit depth,
sample interval,
compression, lossless
and lossy
compression

Topic 3: Computers

Key Areas:
3.1 Hardware
3.2 Software (Part 1)

Keywords:
Hardware, software,
Von-Neumann
architecture, CPU,
RAM, ROM, cache,
virtual memory,
magnetic, optical,
solid-state,
operating system,
paging

Topic 3: Computers

Key areas:
3.2 Software (Part 2)
3.3 Programming
Languages

Keywords:
GUI, device driver,
utility software,
low-level and high-
level languages,
instruction set,
translators,
interpreters,
compilers

Skills Analytical skills
 Critical-thinking skills
 Problem-solving skills
 Programming skills

Key
questions

 Define the term
‘program’

 Explain input
and output

 Define what is
meant by the
terms ‘nibble’
and ‘byte’

 Convert binary to
the hexadecimal
equivalent

 Define what is
meant by the
‘stored program
concept’

 Identify different
types of utility
software

 Identify types of
programs used
every day
 Identify types of

programming
languages
 Explain the

integrated
development
environment
 Use arithmetic

operators and
BIDMAS
 Explain the

importance of
code layout
 Explain errors in

programs
 Evaluate the use of

variables in
algorithms and
programs

 Define the
term ‘runtime
error’

 Explain
primitive data
types (integer,
real, char,
string)

 List flowchart
symbols

 Represent an
algorithm in a
flowchart

 Explain how
flowcharts are
translated into
code

 Define the
terms ‘array’
and ‘list’

 Explain how to
access items in
a list using
indexing

 Create,
append,
delete items
from a list

 Explain how
the range
function
generates a
sequence of
numbers

 Use iteration
‘for’ to process
every item in a
one-
dimensional
data structure

 Convert
between
denary and
binary numbers

 Differentiate
between
signed and
unsigned
integers

 Describe how
positive and
negative
numbers are
represented in
two’s
complement

 Define what is
meant by the
terms ‘binary’
and ‘bit’

 Explain why
binary is used to
represent data
and program
instructions in a
computer

 Describe the
effects of an
overflow error

 Explain why
arithmetic right
shift differs from
a logical right
shift

 Explain why
hexadecimal is
used

 Describe how
characters are
encoded in ASCII

 Derive the code
for an ASCII
character from
that of another

 Describe the
limitations of
ASCII

 Differentiate
between
analogue and
digital data

 Explain the
difference
between image
size and image
resolution

 Define what is
meant by the
terms
‘amplitude’,
‘sample rate’, ‘bit
depth’ and
‘sample interval’

 Describe the
process of
converting
analogue sound
into binary data.

 Identify factors
that affect the
accuracy of the
digital
representation.

 Describe the
hardware
components
used in the von
Neumann
architecture and
explain their role
in the fetch-
decode-execute
cycle

 Explain how the
speed of the
clock impacts on
performance

 Explain how
pipelining
improves the
performance of
the CPU

 Explain the need
for secondary
storage

 Describe how
data are stored
on magnetic,
optical and solid-
state media

 Compare the
capacity, speed
and portability of
magnetic, optical
and solid-state
storage devices

 Describe the role
of the operating
system in a
computer system

 Identify tasks
carried out by an
OS

 Describe how an
OS allocates each
active process a
share of CPU time

 Explain the role of
a device driver

 Explain the
features of a GUI
user interface

 Define what is
meant by the
terms ‘low-level
language’ and
‘high-level
language’

 Explain why each
processor has its
own unique
instruction set

 Describe how
writing a program
in a low-level
language differs
from writing one in
a high-level
language

 Compare features
of low-level and
high-level
languages and
identify tasks for
which each is best
suited

 Explain the need
for program
translators

 Define what is
meant by the
terms ‘compiler’
and ‘interpreter’

 Define the
term
procedure and
parameter

 Define the
terms function,
procedure,
parameters,
return value

 Decompose
problems

 Write functions
and
procedures
with/without
parameters

 Give reasons for
wanting to
reduce file sizes
(storage,
streaming)

 Describe how
compression
affects file sizes

 Identify potential
drawback of
compressing files

 Explain the
difference
between lossless
and lossy
compression

 Describe the
advantages/disa
dvantages of
each type of
compression

 Describe how the
OS organises files
and allocates
space on a hard
drive

 Describe how file
permissions are
used to control
access to files

 Explain the levels
of file access
(read, write,
delete, none) for
a user

 Describe how an
OS uses
scheduling to
give each active
process a share
of CPU time

 Describe the
features of the
round-robin
scheduling
algorithm

 Describe how the
OS uses a paging
algorithm to swap
programs in and
out of main
memory

 Compare the way
in which
interpreters and
compilers translate
high-level code
into machine
code

 Describe the
advantages/disad
vantages of each
approach

 Select and justify
which method of
translation to use
for a given
purpose

Assessme
nt

Formative Assessment:
Target questioning, quizzes, individual and group tasks

Summative Assessment:
Unit test
End-of-term test

Literacy/ Demonstrate and apply knowledge and understanding of the key concepts and principles of computer science

Numerac
y/
SMSC/
Characte
r

Analyse problems in computational terms:
- to make reasoned judgements
- to design, program, evaluate and refine solutions

