
Curriculum Map

Subject: Computer Science Year Group: 10

The Curriculum Map for Computer Science follows two parallel strands, split between Computational Thinking (CT) - the programming aspects covered in
Topics 1 & 6 and the Principles of Computer Science (P) - the theory aspects covered by Topics 1 – 5

 Autumn 1 Autumn 2 Spring 1 Spring 2 Summer 1 Summer 2
Content Topic1 and 6:

Computation
Thinking and Problem
Solving

Key Areas:
1.1 Programming:

tools and
strategies

1.2 Algorithms and
programs

1.3 Data types and
variables

Keywords:
Program,
programming
language, python,
arithmetic operators,
BIDMAS, algorithms,
variables, data
types, IDE, sequence,
identifier

Topic 1 and 6:
Computation
Thinking and
Problem Solving

Key Areas:
1.4 Selection and

relational
operators

1.5 Repetition
1.6 One-

dimensional
data
structure

Keywords:
Input, output,
data structure,
repetition,
function,
relational
operator,
selection
operator

Topic 2: Data

Key Areas:
2.1 Binary
2.2 Data
Representation
(Part 1)

Keywords:
Binary, nibble, bit
byte, kilobyte,
megabyte, signed
and unsigned
integers, two’s
complement,
overflow error,
arithmetic and
logical binary shift

Topic 2: Data

Key Areas:
2.2 Data
Representation (Part
2)
2.3 Data storage
and compression

Keywords:
Hexadecimal, ASCII,
analogue and
digital data,
amplitude, sample
rate, bit depth,
sample interval,
compression, lossless
and lossy
compression

Topic 3: Computers

Key Areas:
3.1 Hardware
3.2 Software (Part 1)

Keywords:
Hardware, software,
Von-Neumann
architecture, CPU,
RAM, ROM, cache,
virtual memory,
magnetic, optical,
solid-state,
operating system,
paging

Topic 3: Computers

Key areas:
3.2 Software (Part 2)
3.3 Programming
Languages

Keywords:
GUI, device driver,
utility software,
low-level and high-
level languages,
instruction set,
translators,
interpreters,
compilers

Skills  Analytical skills
 Critical-thinking skills
 Problem-solving skills
 Programming skills

Key
questions

 Define the term
‘program’

 Explain input
and output

 Define what is
meant by the
terms ‘nibble’
and ‘byte’

 Convert binary to
the hexadecimal
equivalent

 Define what is
meant by the
‘stored program
concept’

 Identify different
types of utility
software

 Identify types of
programs used
every day
 Identify types of

programming
languages
 Explain the

integrated
development
environment
 Use arithmetic

operators and
BIDMAS
 Explain the

importance of
code layout
 Explain errors in

programs
 Evaluate the use of

variables in
algorithms and
programs

 Define the
term ‘runtime
error’

 Explain
primitive data
types (integer,
real, char,
string)

 List flowchart
symbols

 Represent an
algorithm in a
flowchart

 Explain how
flowcharts are
translated into
code

 Define the
terms ‘array’
and ‘list’

 Explain how to
access items in
a list using
indexing

 Create,
append,
delete items
from a list

 Explain how
the range
function
generates a
sequence of
numbers

 Use iteration
‘for’ to process
every item in a
one-
dimensional
data structure

 Convert
between
denary and
binary numbers

 Differentiate
between
signed and
unsigned
integers

 Describe how
positive and
negative
numbers are
represented in
two’s
complement

 Define what is
meant by the
terms ‘binary’
and ‘bit’

 Explain why
binary is used to
represent data
and program
instructions in a
computer

 Describe the
effects of an
overflow error

 Explain why
arithmetic right
shift differs from
a logical right
shift

 Explain why
hexadecimal is
used

 Describe how
characters are
encoded in ASCII

 Derive the code
for an ASCII
character from
that of another

 Describe the
limitations of
ASCII

 Differentiate
between
analogue and
digital data

 Explain the
difference
between image
size and image
resolution

 Define what is
meant by the
terms
‘amplitude’,
‘sample rate’, ‘bit
depth’ and
‘sample interval’

 Describe the
process of
converting
analogue sound
into binary data.

 Identify factors
that affect the
accuracy of the
digital
representation.

 Describe the
hardware
components
used in the von
Neumann
architecture and
explain their role
in the fetch-
decode-execute
cycle

 Explain how the
speed of the
clock impacts on
performance

 Explain how
pipelining
improves the
performance of
the CPU

 Explain the need
for secondary
storage

 Describe how
data are stored
on magnetic,
optical and solid-
state media

 Compare the
capacity, speed
and portability of
magnetic, optical
and solid-state
storage devices

 Describe the role
of the operating
system in a
computer system

 Identify tasks
carried out by an
OS

 Describe how an
OS allocates each
active process a
share of CPU time

 Explain the role of
a device driver

 Explain the
features of a GUI
user interface

 Define what is
meant by the
terms ‘low-level
language’ and
‘high-level
language’

 Explain why each
processor has its
own unique
instruction set

 Describe how
writing a program
in a low-level
language differs
from writing one in
a high-level
language

 Compare features
of low-level and
high-level
languages and
identify tasks for
which each is best
suited

 Explain the need
for program
translators

 Define what is
meant by the
terms ‘compiler’
and ‘interpreter’

 Define the
term
procedure and
parameter

 Define the
terms function,
procedure,
parameters,
return value

 Decompose
problems

 Write functions
and
procedures
with/without
parameters

 Give reasons for
wanting to
reduce file sizes
(storage,
streaming)

 Describe how
compression
affects file sizes

 Identify potential
drawback of
compressing files

 Explain the
difference
between lossless
and lossy
compression

 Describe the
advantages/disa
dvantages of
each type of
compression

 Describe how the
OS organises files
and allocates
space on a hard
drive

 Describe how file
permissions are
used to control
access to files

 Explain the levels
of file access
(read, write,
delete, none) for
a user

 Describe how an
OS uses
scheduling to
give each active
process a share
of CPU time

 Describe the
features of the
round-robin
scheduling
algorithm

 Describe how the
OS uses a paging
algorithm to swap
programs in and
out of main
memory

 Compare the way
in which
interpreters and
compilers translate
high-level code
into machine
code

 Describe the
advantages/disad
vantages of each
approach

 Select and justify
which method of
translation to use
for a given
purpose

Assessme
nt

Formative Assessment:
Target questioning, quizzes, individual and group tasks

Summative Assessment:
Unit test
End-of-term test

Literacy/ Demonstrate and apply knowledge and understanding of the key concepts and principles of computer science

Numerac
y/
SMSC/
Characte
r

Analyse problems in computational terms:
- to make reasoned judgements
- to design, program, evaluate and refine solutions

