

Subject: Triple Science Chemistry (GCSE Chemistry ONLY content in Red)

Year Group: 11

Aut	umn 1/Autumn 2	Autumn 2	Autumn 2/Spring 1	Spring 2	Summer
Content 1 Revie	ew of Year 10 topics	Crude Oil and	1 Chemical Analysis	Earth's Resources	Review and
2 Rates	s of Reaction	Organic	Pure substances -Formulations -	-Using the Earth's resources	Revise
Equilibr	ria	Chemistry	Chromatography -Identification	and sustainable	
Reversi	ible reactions	Crude Oil,	of common gases: hydrogen,	development	
-Energy	y changes and	hydrocarbons	oxygen, carbon dioxide,	- Potable water	
reversit	ble reactions	and alkanes	chlorine	-Waste water treatment	
-Equilib	prium	-Fractional		-Alternative methods of	
-The ef	ffect of changing	distillation and	2 Earth's Atmosphere	extracting metals	
conditi	ions on equilibrium:	petrochemicals	the proportions of	- Life cycle assessments	
conce	entration,	-Properties of	different gases in the	-Ways of reducing the use of	
tempe	erature and pressure	hydrocarbons	atmosphere	Resources	
		-Cracking and	-The Earth's early		
		alkenes	atmosphere	Ch15 Using our resources	
		-Structure and	-How oxygen increased and	Rusting – causes and	
		tormulae of	carbon dioxide decreased	prevention	
		alkenes	-Greenhouse gases	Alloys – composition and uses	
		0.10.0	-Human activities which	Properfies of polymers, glass,	
		Chill Organic	contribute to an increase in	clay ceramics, composites,	
		Reactions	greennouse gases in the	and metals.	
		Names, Chemical	atmosphere Clab al alias atta alta ara ara	The Haber Process – chemistry	
		Reactions,	-Global climate change	and economic factors	
		Displayed	- The carbon tootprint and its	Making tertiliser in the lab	
		Formulae and	Atrease baria is allutante fram		
		Applications of.			
		Arkenes, Arconois,	Proportion and officiate of		
		Estors	atmosphoric pollutants		
		The difference			
		hetween strong	Ch11 Polymers		
		and weak acids	Monomers vs polymers		
		GITU WOUK UCIUS.	Addition polymerisation		
			Namina polymers		
			Condensation polymers		
			Natural polymers – formation of		
			starch and cellulose, proteins		

			How amino acids react together		
			DNA		
			Ch12 Chamical Analysis		
			Tosts for positivo and pogativo		
			ions		
			Instrumental analysis including		
			flame emission spectroscopy		
Skills	Use of appropriate	-Write balanced	Use of appropriate apparatus to	Safe use of appropriate	
	apparatus to make and	formula	make and record a range of	heating devices and	
	record a range of	equations -Draw	measurements accuratelySafe	techniques including use of a	
	measurements	fully displayed	use of a range of equipment to	Bunsen burner and a water	
	accurately, including	structural	purify and/or separate chemical	bath or electric heaterUse of	
	mass, time, temperature,	formulae of the	mixtures including	appropriate apparatus and	
	and volume of liquids and	first four members	chromatographyCarry out	techniques for the	
	gasesUse of	of the alkenes	experiments appropriately	measurement of pH in	
	appropriate apparatus	and the products	having due regard for the	different situationsSafe use of	
	and techniques for	of their addition	correct manipulation of	a range of equipment to purify	
	conducting and	reactions with	apparatus, the accuracy of	and/or separate chemical	
	monitoring chemical	hydrogen, water,	measurements and health and	mixtures including	
	reactionsSafe use and	chlorine, bromine	safety considerationsMake	evaporation, distillation	
	careful handling of gases,	and iodine	and record observations and	Apply a knowledge of a range	
	liquids and solids,	Recognise	measurements using a range of	of techniques, instruments,	
	including careful mixing	organic	apparatus and methods.	apparatus, and materials to	
	of reagents under	molecules from		select those appropriate to	
	controlled conditions	given formulae.	Ch11 Polymers	the experimentCarry out	
	Use scientific theories and		Draw diagrams representing the	experiments appropriately	
	explanations to develop	Ch10 Organic	formation of polymers from	having due regard for the	
	hypothesesPlan	Reactions	monomers	correct manipulation of	
	experiments or devise	Be able to name,	Recognise addition polymers	apparatus, the accuracy of	
	procedures to make	write molecular	and monomers from their	measurements and health	
	observations, produce or	formulae and	displayed formulae.	and safety considerations	
	characterise a substance,	aisplayed	Relate monomers to polymers.	Recognise when to apply a	
	test hypotheses, check	tormulae for	Recognise the basic principles of	knowledge of sampling	
	aata or explore	simple alkenes,	condensation polymerisation –	recnniques to ensure any	
	pnenomenaAppiy a	aiconois, esters	tunctional groups and repeating	samples collected are	
	knowledge of a range of	and carboxylic	UNITS.	representativeMake ana	
	techniques, instruments,	acias.		recora observations and	

apparatus, and materials to select those appropriate to the experimentCarry out experiments appropriately having due regard for the correct manipulation of apparatus, the accuracy of measurements and health and safety considerationsEvaluate methods and suggest possible improvements and further investigations.	Write balanced chemical equations for their reactions. Predict products of different chemical reactions involving these organic compounds. Evaluate some applications and uses.	Recognise how the monomers are arranged in DNA. Ch12 Chemical Analysis Carry out chemical tests for cations and anions, systematically recording results and identifying unknowns. Comparing instrumental methods with traditional chemical tests. Interpreting results from flame emission spectroscopy.	measurements using a range of apparatus and methods Evaluate methods and suggest possible improvements and further investigations. Ch15 Using our Resources Investigation on what makes iron rust Protecting iron and preventing rusting Interpret and evaluate the composition and use of alloys using information and data. Compare thermosetting and thermosoftening plastics. Predict how changing reaction conditions can modify the properties of the resulting polymer Show how the properties of materials are related to their uses. Why is the haber process important? Why are the reaction conditions used in the Haber
			resulting polymer Show how the properties of materials are related to their uses. Why is the haber process important? Why are the reaction conditions used in the Haber process a compromise based on availability and cost of raw materials and energy supplies, control of equilibrium position and rate? How do you prepare a fertiliser in the school lab?

Key	What are reversible	What is crude oil	What do chemists mean by	What is the difference	
questions	reactions and how can	and how can it	Purity?	between finite and renewable	
•	we represent them?	be made useful?	What is a formulation?	resources?	
	How are reversible	What are alkenes	How can melting point data tell	What is the difference	
	reactions affected by	and why are they	us if something is pure of	between potable water and	
	changing the reaction	useful?	impure?	pure water?	
	conditions?	How does	How can chromatography be	How do we treat waste water	
	What is a dynamic	Fractional	used to distinguish pure from	to make it more safe?	
	equilibrium and how can	Distillation work?	impure substances?	How do we treat water to	
	we use Le Chatelier's	What are the	What chemical tests can we do	make it potable?	
	Principle to explain how	different types of	to identify different gases?	How do we extract metals	
	changing certain	combustion	What is the composition of the	from their ores?	
	conditions can affect the	reaction?	Earth's atmosphere? How has it	What are Life Cycle	
	composition of the	What is Cracking	changed over time? How can	Assessments and how are they	
	equilibrium?	and why is it	we explain these changes?	useful?	
		useful?	What are the consequences of	How does using less, reusing	
			global climate change?	and recycling materials	
		Ch10 Organic	What causes atmospheric	decrease their environmental	
		Chemicals	pollutants and what effects do	impact?	
		How can you	they have?		
		represent	,	Ch15 Using our Resources	
		different the	Ch11 Polymers	Why does iron rust? How can	
		structures of	What are monomers?	we prevent it from rusting?	
		organic	What are polymers?	Why are alloys useful?	
		molecules on	What are the different ways of	Why do the properties of	
		paper?	making polymers, how are they	polymers depend on the	
		What rules are	similar and how are they	reaction conditions and on	
		there for the	different?	the monomers used?	
		naming of	Why are polymers useful?	How do the properties of	
		organic	What environmental problems	materials relate to their uses?	
		chemicals?	do polymers cause?		
		What can	How are natural polymers		
		alcohols, esters,	made?		
		carboxylic acids			
		and alkenes be	CH12 Chemical Analysis		
		used for?	What chemical tests can help		
		Why are	identify positive and negative		
		carboxylic acids	ions?		

Assessment	described as weak acids?Formative 'low stakes' assessments to take place more frequently throughout the ter This could be in the form of a range methor QuizHomework taskMicrosoft Forms short testsIn class short testsQuestions and answer sessionsSpelling testsGroup work tasksPeer assessmentsLiteracy and numeracy activitiesEnd of term summative assessmentsPPEs	What can flame emission spectroscopy be used for? What are the advantages and disadvantages of instrumental techniques compared to traditional chemical tests? Formative 'low stakes' assessments to take place more frequently throughout the term. This could be in the form of a range methods: • Quiz • Homework task • Microsoft Forms short tests • In class short tests • Questions and answer sessions • Spelling tests • Group work tasks • Peer assessments Literacy and numeracy activities End of term summative assessments PPEs GCSE exams
Literacy/ Numeracy/ SMSC/ Character	Literacy: Writing up class practicals including requi practicals. Using models to explain chemical process Numeracy: Balancing equations. Interpreting data. SMSC/Character: Appreciating the environmental impact of industrial chemical processes.	Literacy: Writing up class practicals including required practicals. Using models to explain chemical processes.Developing exam technique, gaining marks for showing working during calculations. Appreciating the environmental impact of industrial chemical processes. Appreciating the concept of Life Cycle Assessment and applying it to everyday products.Developing exam technique, gaining marks for showing vorking during calculations, ensuring your extended writing includes sufficient scientific detail, effective

	revision,
	resilience.